MATH 301: INTRODUCTION TO PROOFS HOMEWORK 4

SINA HAZRATPOUR

Problem 1. Decide whether the following are functions, giving reasons for your answers:
(1) The assignment $g: \mathbb{N} \rightarrow \mathbb{N}$ given by $n \mapsto$ "the $(n+1)$ prime number".
(2) The assignment $e: \mathbb{P r o p} \times \mathbb{P}$ rop $\rightarrow \mathbb{P}$ rop which assigns to a pair of propositions P and Q a proposition R such that $P \wedge R \Rightarrow Q$.
(3) The assignment $f: \mathbb{R} \rightarrow \mathbb{R}$ which assigns to a real number x a real number y such that $y^{2}=x$.
(4) The assignment $f^{\prime}: \mathbb{C} \rightarrow \mathbb{C}$ which assigns to a complex number z a complex number w such that $w^{2}=z$.
(5) The assignment $h: \mathbb{Q} \rightarrow \mathbb{Q}$ given by $h(y)=1 / y$.
(6) The assignment $j: \mathbb{Q} \rightarrow \mathbb{Q}$ given by $h(y)=1 / y$.
(7) The assignment $k: \mathbb{N} \rightarrow \mathbb{N}$ given by $m \mapsto d$ where d is a divisor of m.

Problem 2. Let $f: X \rightarrow Y$ be a function. Prove or find a counterexample for the following assertions
(1) $U \subset f^{-1}\left(f_{*}(U)\right)$ for all $U \subset X$
(2) $f^{-1}\left(f_{*}(U)\right) \subset U$ for all $U \subset X$
(3) $V \subset f_{*}\left(f^{-1}(V)\right)$ for all $V \subset Y$
(4) $f_{*}\left(f^{-1}(V)\right) \subset V$ for all $V \subset Y$

Problem 3.

(1) As in the lecture, write $\mathbf{1}=\{0\}$ for the set with one element. Let A be a set. Construct an isomorphism i between A and the A^{1}.
(2) As in the lecture, write $\mathbf{2}=\{0,1\}$ for the set with two elements. Construct an isomorphism j between the cartesian product $A \times A$ and the A^{2}.
(3) Show the "diagonal" function $A \rightarrow A \times A$ is an injection.
(4) Use (3) to prove that the function $A^{\mathbf{1}} \rightarrow A^{\mathbf{2}}$ induced by the unique function $\mathbf{2} \rightarrow \mathbf{1}$ is an injection.

Problem 4. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be functions.
(1) Show that if f and g are surjective, then $g \circ f$ is surjective.
(2) Show that if $g \circ f$ is surjective, then g is surjective.

Problem 5. Let n be a natural number and define an equivalence relation \sim_{n} on \mathbb{Z} by $a \sim_{n} b$ if $a-b$ is divisible by n.
(1) Show that \sim_{n} is an equivalence relation.
(2) For $a \in \mathbb{Z}$, define the set

$$
[a]_{\sim_{n}}=\left\{b \in \mathbb{Z} \mid a \sim_{n} b\right\},
$$

and let C_{n} be the set

$$
\left\{[a]_{\sim_{n}} \mid a \in \mathbb{Z}\right\}
$$

Show that C_{n} is a finite set.
(3) Show that the assignment

$$
[a]_{\sim_{n}}+[b]_{\sim_{n}}=[a+b]_{\sim_{n}}
$$

defines a function

$$
+: C_{n} \times C_{n} \rightarrow C_{n} .
$$

In other words, show that the equivalence class $[a+b]$ only depends on the equivalence classes $[a],[b]$ and not on the representatives a, b.
(4) Similarly, show that the assignment

$$
[a]_{\sim_{n}} *[b]_{\sim_{n}}=[a \cdot b]_{\sim_{n}}
$$

where $a \cdot b$ is just the usual multiplication of integers, defines a function

$$
*: C_{n} \times C_{n} \rightarrow C_{n}
$$

(5) Fill in the multiplication table for C_{4}.

$*$	$[0]$	$[1]$	$[2]$	$[3]$
$[0]$				
$[1]$				
$[2]$				
$[3]$				

(6) Prove that for any integer m, the remainder of m^{2} when divided by 4 is not 3 . State your proof strategy.

