MATH 301: INTRODUCTION TO PROOFS HOMEWORK 6

SINA HAZRATPOUR

Problem 1.

(i) Show that if $f: X \rightarrow X$ is idempotent, then $\operatorname{Fix}(f) \cong \operatorname{Im}(f)$.
(ii) For an idempotent function $f: X \rightarrow X$, show that

$$
X / \sim_{f} \cong \operatorname{Fix}(f) \cong \operatorname{Im}(f)
$$

(iii) Using the previous parts, construct an idempotent function $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N} \times \mathbb{N}$ such that $\operatorname{Fix}(f)$ is in bijection with the set of integers. Describe the elements of $\operatorname{Fix}(f)$.
Problem 2. Suppose $r: A \rightarrow B$ is a retraction. Show that B is in bijection with the quotient A / \sim_{r}.
Problem 3. In the previous lecture, we defined the set \mathbb{Q} of rational numbers to be the quotient set by the equivalence relation

$$
(u, a) \approx(v, b)=_{\operatorname{def}}(u(b+1)=v(a+1))
$$

on the set $\mathbb{Z} \times \mathbb{N}$. Define the relation

$$
(u, a) \approx^{\prime}(v, b) \Leftrightarrow u b=v a
$$

on the set $\mathbb{Z} \times \mathbb{Z} \backslash\{0\}$.
(i) Show that this relation is an equivalence relation.
(ii) Write \mathbb{Q}^{\prime} for the quotient set obtained by the relation \approx^{\prime}. Show that \mathbb{Q}^{\prime} is in bijection with \mathbb{Q}, and conclude that it either way we define the same set of rational numbers.

Problem 4.

(i) Show that, for all $x, y \in \mathbb{R}_{\mathrm{d}}$,

$$
\neg(x<y) \Rightarrow y \leqslant x
$$

(ii) Use the previous result to prove that, assuming Excluded Middle, we have that for all $x, y \in \mathbb{R}_{\mathrm{d}}$,

$$
(x<y) \vee(y \leqslant x)
$$

(iii) Does $\neg(x \leqslant y)$ imply $y<x$?

