MATH 301: INTRODUCTION TO PROOFS HOMEWORK 6

SINA HAZRATPOUR

Problem 1.

- (i) Show that if $f: X \to X$ is idempotent, then $Fix(f) \cong Im(f)$.
- (ii) For an idempotent function $f: X \to X$, show that

$$X/\sim_f \cong \operatorname{Fix}(f) \cong \operatorname{Im}(f)$$

(iii) Using the previous parts, construct an idempotent function $f : \mathbb{N} \times \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ such that $\operatorname{Fix}(f)$ is in bijection with the set of integers. Describe the elements of $\operatorname{Fix}(f)$.

Problem 2. Suppose $r: A \to B$ is a retraction. Show that B is in bijection with the quotient A/\sim_r .

Problem 3. In the previous lecture, we defined the set \mathbb{Q} of rational numbers to be the quotient set by the equivalence relation

$$(u, a) \approx (v, b) =_{\text{def}} (u(b+1) = v(a+1))$$

on the set $\mathbb{Z} \times \mathbb{N}$. Define the relation

$$(u,a) \approx' (v,b) \Leftrightarrow ub = va$$

on the set $\mathbb{Z} \times \mathbb{Z} \setminus \{0\}$.

- (i) Show that this relation is an equivalence relation.
- (ii) Write \mathbb{Q}' for the quotient set obtained by the relation \approx' . Show that \mathbb{Q}' is in bijection with \mathbb{Q} , and conclude that it either way we define the same set of rational numbers.

Problem 4.

(i) Show that, for all $x, y \in \mathbb{R}_d$,

$$\neg (x < y) \Rightarrow y \leqslant x$$

(ii) Use the previous result to prove that, assuming Excluded Middle, we have that for all $x, y \in \mathbb{R}_d$,

$$(x < y) \lor (y \leqslant x)$$

(iii) Does $\neg(x \leq y)$ imply y < x?