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The inference rules for ∀ and ∃

The introduction rule

A(t)
∀i

∀y A(y)

The elimination rule

∀x A(x)
∀e

A(t)

The introduction rule

A(t)
∃i

∃xA(x)

The elimination rule

∃xA(x)

1
A(y)

...
B

1 ∃e
B



The Rules of Inference for Universal Quantifier (∀)

Here

• A is a predicate on a domain of
discourse X,

• t is a generic term of domain X,
and

• x and y are variables from domain
X.

These rules are valid under two
important caveats of the next slides.

The introduction rule

A(t)
∀i

∀y A(y)

The elimination rule

∀x A(x)
∀e

A(t)



If Things Can Go Wrong, They Will Go Horribly Wrong, Absurdly!

Note that there are important caveats for ∀i and ∀e to be valid, and if they are
not observed, things can go horribly wrong (i.e. we arrive at absurd conclusions.)

Define the predicates A and B in one free variable x of natural numbers N by

A(x) := ∃y : N (y < x) B(x) := ∃y : N (y > x) :

Be warned that if we apply the rules ∀i and ∀e naively, we get the following
absurd conclusions:

∃n : N (t − 1 = n2)

∃n : N (t = n2 + 1)

1 < t
∃y (y < t)

A(t)
∀I

∀y A(y)

∀x B(x)
∀e

B(y + 1)

∃y (y > y + 1)
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But, What’s The Problem?

Here are the problems with the above inferences:

1 In the left-hand side inferences involving ∀i, we have more information about
t than just t : R. So, t is not generic. (It’s like inferring "war is mother of
all inventions" and verifying that statement by examining inventions resulted
from war time urgency and mobilizations.

2 In the right-hand side inference, the sin we are committing is that the term
t = y + 1 which we substitute for x in B(x) has the variable y in it which is
bound in B(x). Another example of such a sin lead us to infer, incorrectly of
course, from the assumption that every child has a parent, the conclusion
that every child is a parent of himself or herself (a logical impossibility, at
least without traveling back in time).
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How To Solve The Inference Problems For ∀i and ∀e

The answer to any problem in logic is
always "with more rules".

1 In the introduction rule, t being
generic means that it should not
have any property other than being
a from X, and this means that t
should not be free in any
uncanceled hypothesis.

2 In the elimination rule, t can be
any term that does not clash with
any of the bound variables in A.

The introduction rule

A(t)
∀i

∀y A(y)

The elimination rule

∀x A(x)
∀e

A(t)
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How do we prove an existential statement?

Suppose we want to prove that there exists an odd composite number. We can
formalize this statement as

∃n ∈ N ¬even(n) ∧ ¬prime(n)

where the predicates even and prime are the predicates of "evenness" and
"primeness" of numbers, respectively.

To prove this statement, we just present a candidate, and show that the
candidate satisfies the required properties. For example, we could choose 15, and
then show that 15 is not even (by witnessing 15 = 2× 7 + 1) and that 15 is not
prime (by witnessing 15 = 3× 5. Of course, there’s nothing special about 15,
and we could have proven it also using a different number, like 27 or 39. The
choice of candidate does not matter, as long as it has the required properties.
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In natural deduction this proof appears as:

...
¬even(15)

...
¬prime(15)

(∧i)
¬even(15) ∧ ¬prime(15)

∃n (¬even(n) ∧ ¬prime(n))



Another Example of How We Prove An Existential Statement
Consider the predicate of sexy on prime numbers which we defined in our Lean
Lab as a binary predicate

sexy : N → N → Prop

where

sexy m n := prime(m) ∧ prime(n) ∧ (m − n = 6 ∨ n −m = 6)

Suppose we want to prove that there are sexy primes. To do this, we only need
to present two candidates, and show that they satisfies the required properties.
For example, we could choose 5 and 11, and then show that 5 is prime and 11 is
prime and their difference is 6. Of course, there’s nothing special about 5 and 11,
and we could have proven it also using different candidates, like 13 and 19. For
the existential statement

∃m ∃n sexy m n

to be true the choices of candidates do not matter.
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The Rules of Inference for Existential Quantifier (∃)

Let’s make the above observations into rules:

Here

• A;B are predicates on a domain of
discourse X,

• t is any term of domain X, and

• x is variables from domain X, and

• y is a generic term of X.

These rules are valid under two
important caveats of the next slide.

The introduction rule

A(t)
∃i

∃xA(x)

The elimination rule

∃xA(x)

1
A(y)

...
B

1 ∃e
B



The Intuition Behind The Elimination Rule ∃e

If we know ∃x A(x), we can temporarily reason about an arbitrary element y
satisfying A(y) in order to prove a conclusion that doesn’t depend on y .

Suppose I have a task G at hand and in general any of various tools, say Ti ’s, can
be used to achieve task G. I have also been given a toolbox but I cannot, for
some reason, inspect into it and see which tools it contains. My toolbox may or
may not have any of the tools Ti . From the knowledge that my toolbox has some
Ti , but not knowing which one, I know that I can achieve G.
Think about it: How did I know that I can achieve G from the knowledge that
my toolbox has some Ti?
Because I knew any Ti is equally as good as any other so far as the achieving
task G is concerned.
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The Caveats For ∃i and ∃e

The answer to any problem in logic is
always "with more rules".

1 In the introduction rule, t must not
clash with any of the bound
variables in A.

2 In the elimination rule, y being
generic means that it should not
have any property other than being
a from X, and this means that y
should not be free in any
uncanceled hypothesis.

The introduction rule

A(t)
∃i

∃xA(x)
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If Things Can Go Wrong, They Will Go Horribly Wrong, Absurdly!

If the caveats above are not observed, things can go horribly wrong (i.e. we
arrive at absurd conclusions).

Be warned that if we apply the rules ∃i and ∃e
naively, we get the following absurd conclusions:
Define the predicates A and B in one free variable x of natural numbers N by

A(x) := ∀y (y 6 x) B(x) := ∀y (x 6 y) :

∀y (y 6 y)

∃x ∀y (y 6 x) ∃x B(x)

1
∃n (z2 = n + 1)

z > 1

2
B(z)

z 6 0
⊥

2 ∃e⊥
- In the first derivation we have mistakenly substituted y for t in the inference
rule.
- In the second derivation, z was not generic.
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Examples of Natural Deduction Proofs Involving Quantifiers

In the following examples of natural deduction proofs identify the rules of
inference by writing down the proper line on the right hand side of inference lines:



An Example of Natural Deduction for Quantifiers

Example:
In below we construct a natural deduction proof of

∀x (Ax ⇒ Bx) ⇒ ∃x Ax ⇒ ∃x Bx :

To do this end, we do the following steps:
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i Introduce hypothesis ∀x (Ax ⇒ Bx) and
annotate it by 1.

ii Introduce hypothesis ∃x Ax and annotate it by 2.

iii We are trying to eliminate the hypothesis 2; to
do that introduce an arbitrary term y which
satisfies A.

iv From ∀x (Ax ⇒ Bx) we derive Ay ⇒ By by ∀
elimination.

v We apply ⇒ elimination to obtain By from
Ay ⇒ By and Ay .

vi since y was arbitrary we derive By from ∃x Ax

and cancel the hypothesis 3.

vii From By we derive ∃x Bx by the introduction
rule of ∃.

viii Finally we eliminate hypotheses 2 and 1 by
implication introduction.

(⇒e)
By

3 (∃e)
By

(∃i)
∃x Bx

2 (⇒i)
∃x Ax ⇒ ∃x Bx

1 (⇒i)
∀x (Ax ⇒ Bx) ⇒ ∃x Ax ⇒ ∃x Bx
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Challenge 2:

1
∀x A(x)

A(y)

A(y) ∨ B(y)

∀x (A(x) ∨ B(x))
1

∀x A(x) ⇒ ∀x (A(x) ∨ B(x))



Challenge 3:

1
∀x A(x)

A(y)

2
∀x B(x)

B(y)

A(y) ∧ B(y)

∀y (A(y) ∧ B(y))
2

∀x B(x) ⇒ ∀y (A(y) ∧ B(y))
1

∀x A(x) ⇒ (∀x B(x) ⇒ ∀y (A(y) ∧ B(y)))



Challenge 4:

2
∃x (A(x) ∧ B(x))

1
∀x (A(x) ⇒ ¬B(x))

A(x) ⇒ ¬B(x)

3
A(x) ∧ B(x)

A(x)

¬B(x)

3
A(x) ∧ B(x)

B(x)

⊥
3⊥

2
¬∃x (A(x) ∧ B(x))

1
∀x (A(x) ⇒ ¬B(x)) ⇒ ¬∃x (A(x) ∧ B(x))



Challenge 5:

1
¬∀x A(x)

4
¬(∃x ¬A(x))

5
¬A(x)

∃x ¬A(x)
⊥

5
A(x)

∀x A(x)

⊥
4

∃x ¬A(x)

1
∃x ¬A(x)

3
¬A(y)

2
∀x A(x)

A(y)

⊥
3⊥

2
¬∀x A(x)

1
¬∀x A(x) ↔ ∃x ¬A(x)



Challenge 6:

1
∃x (A(x) ∨ B(x))

2
A(y) ∨ B(y)

3
A(y)

∃x A(x)

∃x A(x) ∨ ∃x B(x)

3
B(y)

∃x B(x)

∃x A(x) ∨ ∃x B(x)
3

∃x A(x) ∨ ∃x B(x)
2

∃x A(x) ∨ ∃x B(x)
1

∃x (A(x) ∨ B(x)) ⇒ ∃x A(x) ∨ ∃x B(x))


