MATH 301

INTRODUCTION TO PROOFS

Sina Hazratpour Johns Hopkins University Spring 2022 First Week (Summary)

Overview

- 1 Connectives
- 2 Rule of The Game (of Inference)
- 3 Examples of Natural Deduction Proof Trees

New Propositions From The Old

• Given propositions P and Q, we can make the following new propositions:

Proposition	Notation
P and Q	$P \wedge Q$
P or Q	$P \vee Q$
P implies Q	$P \Rightarrow Q$
not P	$\neg P$
P if and only if Q	$P \Leftrightarrow Q$

New Propositions From The Old

• Given propositions P and Q, we can make the following new propositions:

Proposition	Notation
P and Q	$P \wedge Q$
P or Q	$P \lor Q$
P implies Q	$P \Rightarrow Q$
not P	$\neg P$
P if and only if Q	$P \Leftrightarrow Q$

• Note that $P \Leftrightarrow Q$ is defined to be

$$(P \Rightarrow Q) \land (Q \Rightarrow P)$$

Few Things to Note

- Note that we use upper-case letters to denote propositions.
- $P \Rightarrow Q$: if P then Q, or P is sufficient for Q, or Q is necessary from P.
- $\neg P$: it is not the case that P.
- A propositional formula is built from propositional atoms (aka variables) and logical operators: e.g. $P \land (\neg Q \Rightarrow R) \lor (\neg P \Rightarrow \neg (R \lor S))$

Overview

- 1 Connectives
- 2 Rule of The Game (of Inference)
- 3 Examples of Natural Deduction Proof Trees

The implication operator is the logical operator \Rightarrow , defined according to the following rules:

The implication operator is the logical operator \Rightarrow , defined according to the following rules:

 If Q can be derived from the assumption that P is true, then P ⇒ Q is true;

The introduction rule

$$\frac{\overline{P}^{1}}{\vdots}$$

$$\frac{Q}{P \Rightarrow Q} \Rightarrow i$$

The implication operator is the logical operator \Rightarrow , defined according to the following rules:

- If Q can be derived from the assumption that P is true, then P ⇒ Q is true;
- If P ⇒ Q is true and P is true, then Q is true.

The introduction rule

$$\frac{\overline{P}^{1}}{\vdots}$$

$$\frac{Q}{P \Rightarrow Q} \Rightarrow i$$

$$\frac{P \Rightarrow Q \qquad P}{Q} \Rightarrow \epsilon$$

The implication operator is the logical operator \Rightarrow , defined according to the following rules:

- If Q can be derived from the assumption that P is true, then P ⇒ Q is true;
- If P ⇒ Q is true and P is true, then Q is true.

 $P \Rightarrow Q$ represents the expression "if P, then Q".

The introduction rule

$$\frac{\overline{P}^{1}}{\vdots}$$

$$\frac{Q}{P \Rightarrow Q} \Rightarrow i$$

$$\frac{P \Rightarrow Q \qquad P}{Q} \Rightarrow \bullet$$

The conjunction operator is the logical operator \wedge , defined according to the following rules:

The conjunction operator is the logical operator \wedge , defined according to the following rules:

 If P is true and Q is true, then P ∧ Q is true;

The introduction rule

$$\frac{P \quad Q}{P \wedge Q} \wedge$$

The conjunction operator is the logical operator \wedge , defined according to the following rules:

- If P is true and Q is true, then P ∧ Q is true;
- If $P \wedge Q$ is true, then P is true;

The introduction rule

$$\frac{P \quad Q}{P \wedge Q}$$
 $\wedge i$

$$\frac{P \wedge Q}{P} \wedge \mathsf{E}_{\ell} \qquad \frac{P \wedge Q}{Q} \wedge \mathsf{E}_{\mathsf{r}}$$

The conjunction operator is the logical operator \wedge , defined according to the following rules:

- If P is true and Q is true, then P ∧ Q is true;
- If $P \wedge Q$ is true, then P is true:
- If $P \wedge Q$ is true, then Q is true.

 $P \wedge Q$ represents "P and Q".

The introduction rule

$$\frac{P}{P \wedge Q} \wedge i$$

$$\frac{P \wedge Q}{P} \wedge \mathsf{E_{\ell}} \qquad \frac{P \wedge Q}{Q} \wedge \mathsf{E_{r}}$$

The disjunction operator is the logical operator \vee , defined according to the following rules:

The disjunction operator is the logical operator \vee , defined according to the following rules:

• If P is true, then $P \vee Q$ is true;

The introduction rule

$$\frac{P}{P \vee Q} \vee i_{\ell} \qquad \frac{Q}{P \vee Q} \vee i_{r}$$

The disjunction operator is the logical operator \vee , defined according to the following rules:

- If P is true, then $P \vee Q$ is true;
- If Q is true, then $P \vee Q$ is true;

The introduction rule

$$\frac{P}{P \vee Q} \vee i_{\ell} \qquad \frac{Q}{P \vee Q} \vee i_{r}$$

$$\begin{array}{cccc}
 & \overline{P}^{1} & \overline{Q}^{1} \\
\vdots & \vdots & \vdots \\
 & \overline{R}^{1} & \overline{Q}^{1}
\end{array}$$

The disjunction operator is the logical operator \vee , defined according to the following rules:

- If P is true, then $P \vee Q$ is true;
- If Q is true, then $P \vee Q$ is true;
- If P ∨ Q is true, and if R can be derived from P and from Q, then R is true.

 $P \lor Q$ represents "P or Q".

The introduction rule

$$\frac{P}{P \vee Q} \vee i_{\ell} \qquad \frac{Q}{P \vee Q} \vee i_{r}$$

Falsity (aka Contradiction)

A **contradiction** is a proposition that is known or assumed to be **false**.

Falsity (aka Contradiction)

A **contradiction** is a proposition that is known or assumed to be false. We will use the symbol \bot to represent an arbitrary contradiction.

Falsity (aka Contradiction)

an arbitrary contradiction.

A **contradiction** is a proposition that is known or assumed to be false. We will use the symbol \bot to represent

The expression $\neg P$ represents "not P" (or "P is false").

$$\frac{\perp}{P}$$
 $\perp \epsilon$

The Rules of Inference for Negation

The **negation** operator is the logical operator \neg , defined according to the following rules:

- If a contradiction can be derived from the assumption that P is true, then ¬P is true;
- If ¬P and P are both true, then a contradiction may be derived.

The expression $\neg p$ represents "not P" (or "P is false").

The introduction rule

$$\frac{\neg P \quad P}{\perp}$$

In order to prove a proposition P is false (that is, that $\neg P$ is true), it suffices to assume that P is true and derive a contradiction.

Overview

- 1 Connectives
- 2 Rule of The Game (of Inference)
- 3 Examples of Natural Deduction Proof Trees

Commutativity of Conjunction

We construct a proof of

$$P \wedge Q \Rightarrow Q \wedge P$$

from no hypotheses and thereby establish the formula above as a tautology.

Commutativity of Conjunction

We construct a proof of

$$P \wedge Q \Rightarrow Q \wedge P$$

from no hypotheses and thereby establish the formula above as a tautology.

$$\frac{\overline{P \wedge Q}}{Q}^{1} \xrightarrow{(\land e_{\mathsf{r}})} \frac{\overline{P \wedge Q}}{P}^{1} \xrightarrow{(\land e_{\ell})} \frac{Q \wedge P}{P \wedge Q \Rightarrow Q \wedge P}^{1}$$

In steps, we show that

$$(P \Rightarrow (Q \Rightarrow R)) \Rightarrow (P \land Q \Rightarrow R)$$

In steps, we show that

$$(P \Rightarrow (Q \Rightarrow R)) \Rightarrow (P \land Q \Rightarrow R)$$

$$P \Rightarrow (Q \Rightarrow R)^{-1} \qquad P \wedge Q^{-2}$$

$$P \wedge Q^{-2}$$

In steps, we show that

$$(P \Rightarrow (Q \Rightarrow R)) \Rightarrow (P \land Q \Rightarrow R)$$

In steps, we show that

$$(P \Rightarrow (Q \Rightarrow R)) \Rightarrow (P \land Q \Rightarrow R)$$

$$\frac{P \Rightarrow (Q \Rightarrow R)}{Q \Rightarrow R}^{1} \quad \frac{P \wedge Q}{P}^{2} \quad (\land e_{\ell}) \quad P \wedge Q}{(\Rightarrow e)}^{2}$$

In steps, we show that

$$(P \Rightarrow (Q \Rightarrow R)) \Rightarrow (P \land Q \Rightarrow R)$$

$$\frac{ P \Rightarrow (Q \Rightarrow R)^{1} \quad \overline{P \wedge Q}^{2} \quad (\land e_{\ell})}{Q \Rightarrow R} \quad (\Rightarrow e) \quad \overline{P \wedge Q}^{2} \quad (\land e_{r})$$

In steps, we show that

$$(P \Rightarrow (Q \Rightarrow R)) \Rightarrow (P \land Q \Rightarrow R)$$

$$\frac{P \Rightarrow (Q \Rightarrow R)^{1} \quad \frac{P \wedge Q}{P}^{2}}{Q \Rightarrow R}^{(\land e_{\ell})} \quad \frac{P \wedge Q}{Q}^{2}_{(\land e_{r})}$$

$$\frac{Q \Rightarrow R}{R}$$

In steps, we show that

$$(P \Rightarrow (Q \Rightarrow R)) \Rightarrow (P \land Q \Rightarrow R)$$

$$\frac{P \Rightarrow (Q \Rightarrow R)^{-1} \quad \frac{\overline{P \wedge Q}^{-2}}{P}_{(\land e_{\ell})}}{Q \Rightarrow R} \quad \stackrel{(\land e_{\ell})}{=} \quad \frac{\overline{P \wedge Q}^{-2}_{(\land e_{\ell})}}{Q}_{(\land e_{\ell})}$$

$$\frac{R}{P \wedge Q \Rightarrow R}^{-2} \quad \stackrel{(\Rightarrow e)}{=} \quad \stackrel{(\land e_{\ell})}{=} \quad \stackrel{(\land$$

In steps, we show that

$$(P \Rightarrow (Q \Rightarrow R)) \Rightarrow (P \land Q \Rightarrow R)$$

$$\frac{P \Rightarrow (Q \Rightarrow R)}{Q \Rightarrow R} \stackrel{1}{\xrightarrow{P \land Q}} \stackrel{2}{\xrightarrow{(\land e_{\ell})}} \frac{P \land Q}{Q} \stackrel{2}{\xrightarrow{(\land e_{r})}} \frac{Q \Rightarrow R}{Q} \stackrel{(\land e_{r})}{\xrightarrow{P \land Q \Rightarrow R}} \stackrel{2}{\xrightarrow{(\Rightarrow e)}} \frac{R}{(P \Rightarrow (Q \Rightarrow R)) \Rightarrow (P \land Q \Rightarrow R)} \stackrel{1}{\xrightarrow{(\Rightarrow e)}} \stackrel{1}{\xrightarrow{(\Rightarrow e)}}$$

Eliminating Cases

We construct a proof of

$$(P \lor Q) \land \neg Q \Rightarrow P$$

from no hypotheses and thereby establish the formula above as a tautology.

Eliminating Cases

We construct a proof of

$$(P \lor Q) \land \neg Q \Rightarrow P$$

from no hypotheses and thereby establish the formula above as a tautology.

$$\frac{\overline{\left[\left((P\vee Q)\wedge\neg Q\right)\right]}}{\frac{P\vee Q}{P}}^{1} \xrightarrow{P}^{2} \frac{\overline{\frac{Q}{Q}}^{2} \frac{\overline{\left(P\vee Q\right)\wedge\neg Q}}{\neg Q}}{\frac{\bot}{P}}^{1}$$

$$\frac{P\vee Q}{\overline{\left(P\vee Q\right)\wedge\neg Q\Rightarrow P}}^{1}$$

Challenge: Add annotations for inference rules (on the right side of each horizontal inference line) in the proof tree above.

Conjunction Distributes over Disjunction

We prove in below that the propositional formula

$$(P \land (Q \lor R)) \Rightarrow ((P \land Q) \lor (P \land R))$$

is a tautology.

$$\frac{P \wedge (Q \vee R)}{P \wedge (Q \vee R)} \stackrel{1}{=} \frac{P \wedge (Q \vee R)}{P \wedge Q} \stackrel{1}{=} \frac{P \wedge (Q \vee R)}{P \wedge R} \stackrel{1}{=} \frac{P \wedge (Q \vee R)}{P \wedge R} \stackrel{1}{=} \frac{P \wedge R}{P \wedge R} \stackrel{2}{=} \frac{P \wedge Q}{(P \wedge Q) \vee (P \wedge R)} \stackrel{2}{=} \frac{(P \wedge Q) \vee (P \wedge R)}{(P \wedge (Q \vee R)) \Rightarrow ((P \wedge Q) \vee (P \wedge R))} \stackrel{1}{=} \frac{P \wedge Q}{P \wedge Q} \stackrel{2}{=} \frac{P \wedge Q}{P \wedge Q}$$

Challenge: Add annotations for inference rules (on the right side of each horizontal inference line) in the proof tree above.

Proof by Contrapositive

We prove the proposition $\neg Q \Rightarrow \neg P$ from the assumption $P \Rightarrow Q$. This is usually referred to as proof by contrapositive; if we know that Q follows from P, and yet Q is not the case, then P is also not the case (If it was, Q would be too).

Proof by Contrapositive

We prove the proposition $\neg Q \Rightarrow \neg P$ from the assumption $P \Rightarrow Q$. This is usually referred to as proof by contrapositive; if we know that Q follows from P, and yet Q is not the case, then P is also not the case (If it was, Q would be too).

$$\frac{\overline{Q} \stackrel{1}{\Rightarrow \bot} \stackrel{P}{\Rightarrow Q} \stackrel{2}{\Rightarrow Q} \stackrel{(\Rightarrow e)}{=} \frac{\frac{\bot}{P \Rightarrow \bot} \stackrel{2}{\Rightarrow \bot} \stackrel{(\Rightarrow i)}{=} \frac{}{\neg P} \stackrel{1}{\Rightarrow \Box} \stackrel{(\Rightarrow i)}{=} \frac{}{\neg Q \Rightarrow \neg P} \stackrel{1}{\Rightarrow \Box} \stackrel{(\Rightarrow i)}{=}$$

If P Then Not Not P

We prove that every proposition implies its double negation, that is for every proposition P, the formula

$$P \Rightarrow \neg \neg P$$

$$\frac{P^{1} \quad \neg P^{2}}{\frac{\bot}{\neg \neg P^{2}}} \stackrel{(\Rightarrow e)}{} \frac{}{P \Rightarrow \neg \neg P^{1}} \stackrel{(\Rightarrow e)}{}$$