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New Propositions From The Old
• Given propositions P and Q, we can make the following new propositions:

Proposition Notation

P and Q P ∧ Q

P or Q P ∨ Q

P implies Q P ⇒ Q

not P ¬P

P if and only if Q P ⇔ Q

• Note that P ⇔ Q is defined to be

(P ⇒ Q) ∧ (Q ⇒ P )
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Few Things to Note

• Note that we use upper-case letters to denote propositions.

• P ⇒ Q: if P then Q, or P is sufficient for Q, or Q is necessary from P .

• ¬P : it is not the case that P .

• A propositional formula is built from propositional atoms (aka variables) and
logical operators: e.g. P ∧ (¬Q ⇒ R) ∨ (¬P ⇒ ¬(R ∨ S))
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The Rules of Inference for implication

The implication operator is the logical
operator ⇒, defined according to the
following rules:

• If Q can be derived from the
assumption that P is true, then
P ⇒ Q is true;

• If P ⇒ Q is true and P is true,
then Q is true.
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The Rules of Inference for implication

The implication operator is the logical
operator ⇒, defined according to the
following rules:

• If Q can be derived from the
assumption that P is true, then
P ⇒ Q is true;

• If P ⇒ Q is true and P is true,
then Q is true.

P ⇒ Q represents the expression “if P ,
then Q”.

The introduction rule
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The elimination rule

P ⇒ Q P ⇒e
Q



The Rules of Inference for Conjunction

The conjunction operator is the logical
operator ∧, defined according to the
following rules:

• If P is true and Q is true, then
P ∧ Q is true;

• If P ∧ Q is true, then P is true;

• If P ∧ Q is true, then Q is true.
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The Rules of Inference for Conjunction

The conjunction operator is the logical
operator ∧, defined according to the
following rules:

• If P is true and Q is true, then
P ∧ Q is true;

• If P ∧ Q is true, then P is true;

• If P ∧ Q is true, then Q is true.

P ∧ Q represents “P and Q”.
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The Rules of Inference for Disjunction

The disjunction operator is the logical
operator ∨, defined according to the
following rules:

• If P is true, then P ∨ Q is true;

• If Q is true, then P ∨ Q is true;

• If P ∨ Q is true, and if R can be
derived from P and from Q, then R

is true.
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The Rules of Inference for Disjunction

The disjunction operator is the logical
operator ∨, defined according to the
following rules:

• If P is true, then P ∨ Q is true;

• If Q is true, then P ∨ Q is true;

• If P ∨ Q is true, and if R can be
derived from P and from Q, then R

is true.

P ∨ Q represents “P or Q”.

The introduction rule
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Falsity (aka Contradiction)

A contradiction is a proposition that
is known or assumed to be false.

We will use the symbol ⊥ to represent
an arbitrary contradiction.
The expression ¬P represents “not P ”
(or “P is false”).

The elimination rule
⊥ ⊥e
P
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Falsity (aka Contradiction)
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is known or assumed to be false.
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The Rules of Inference for Negation

The negation operator is the logical
operator ¬, defined according to the
following rules:

• If a contradiction can be derived
from the assumption that P is
true, then ¬P is true;

• If ¬P and P are both true, then a
contradiction may be derived.

The expression ¬p represents “not P ”
(or “P is false”).

The introduction rule
1

P
...
⊥

1 ¬i¬P

The elimination rule
¬P P ¬e

⊥



In order to prove a proposition P is false (that is, that ¬P is true), it suffices to
assume that P is true and derive a contradiction.
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Commutativity of Conjunction

We construct a proof of
P ∧ Q ⇒ Q ∧ P

from no hypotheses and thereby establish the formula above as a tautology.

1
P ∧ Q

(∧er)
Q

1
P ∧ Q

(∧e‘)
P

(∧i)
Q ∧ P

1
P ∧ Q ⇒ Q ∧ P
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Currying

In steps, we show that

(P ⇒ (Q ⇒ R)) ⇒ (P ∧ Q ⇒ R)

is a tautology.
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Eliminating Cases

We construct a proof of
(P ∨ Q) ∧ ¬Q ⇒ P

from no hypotheses and thereby establish the formula above as a tautology.

1
[
`
(P ∨ Q) ∧ ¬Q

´
]

P ∨ Q

2
P
P

2
Q
Q

1
(P ∨ Q) ∧ ¬Q

¬Q
⊥
P

2
P

1
(P ∨ Q) ∧ ¬Q ⇒ P

Challenge: Add annotations for inference rules (on the right side of each
horizontal inference line) in the proof tree above.
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Conjunction Distributes over Disjunction

We prove in below that the propositional formula

(P ∧ (Q ∨ R)) ⇒ ((P ∧ Q) ∨ (P ∧ R))

is a tautology.

1
P ∧ (Q ∨ R)

Q ∨ R

1
P ∧ (Q ∨ R)

P
2

Q
P ∧ Q

(P ∧ Q) ∨ (P ∧ R)

1
P ∧ (Q ∨ R)

P
2

R
P ∧ R

(P ∧ Q) ∨ (P ∧ R)
2

(P ∧ Q) ∨ (P ∧ R)
1

(P ∧ (Q ∨ R)) ⇒ ((P ∧ Q) ∨ (P ∧ R))

Challenge: Add annotations for inference rules (on the right side of each
horizontal inference line) in the proof tree above.



Proof by Contrapositive

We prove the proposition ¬Q ⇒ ¬P from the assumption P ⇒ Q.
This is usually referred to as proof by contrapositive; if we know that Q follows
from P , and yet Q is not the case, then P is also not the case (If it was, Q would
be too).

1¬Q
Q ⇒ ⊥

2
P P ⇒ Q

(⇒e)
Q

(⇒e)
⊥

2 (⇒i)
P ⇒ ⊥
¬P

1 (⇒i)
¬Q ⇒ ¬P
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If P Then Not Not P

We prove that every proposition implies its double negation, that is for every
proposition P , the formula

P ⇒ ¬¬P

is a tautology.

1
P

2¬P
⊥

2 (⇒e)
¬¬P

1 (⇒e)
P ⇒ ¬¬P
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